Thomas Morrow, MD

The complications of autograft surgery are largely avoided when advances in biotechnology play a role in tissue regeneration and repair

Thomas Morrow, MD

Nearly 850,000 bone grafts are performed in the United States each year for reasons as varied as severe spinal disease, foot and ankle fusions, nonhealing long bone fractures, and joint replacement revision. Most of the time, donor bone is taken from the patient’s iliac crest to fashion a framework within the graft site for bone-building cells to thrive. This is called an autograft, as the living tissue comes from the patient.

The use of an autograft exposes the patient to potential risks including additional blood loss, nerve injury, infection, and prolonged healing. It is accompanied by additional costs because a second surgical procedure is needed and requires handling live tissue. In addition, the amount of material that can be harvested is finite and may not adequately fill the surgical void.

Alternatives to the autograft are the use of inert calcium substances or cadaver bone. Additionally, a variety of bone growth factors have been studied but until now, no approach has combined the matrix and the growth factor into one proven package to provide material for these large orthopedic procedures. This may soon change.

A small company, BioMimetic Therapeutics, in Franklin, Tenn., has developed a kit that includes beta-tricalcium phosphate granules (inert bone-like granules) and recombinant human platelet-derived growth factor BB (rhPDGF-BB). These are mixed to create a paste-like material that can be used to fill the space created by the defect. The company calls this kit the Augment Bone Graft.

Naturally occurring platelet-derived growth factor (PDGF) is released when platelets are activated in response to injury. PDGF stimulates three processes that are critical for repair of musculoskeletal injury: It draws repair cells to the site of an injury, stimulates cell division, and is directly involved in regulating vascular endothelial growth factor, a powerful stimulant of blood vessel formation. By creating a recombinant version of PDGF (rhPDGF-BB), BioMimetic Therapeutics has avoided the need for a human source for this important protein.

The company already has FDA approval for a similar kit for dental procedures and is seeking FDA approval for ankle fusions. The company gained approval for the ankle fusion kit in Canada in late 2009.

The ankle and foot is a complex structure. It comprises 26 bones that must work together to enable standing, walking, and running. Some of these bones are rather small but must withstand enormous recurring forces daily. Ankle and foot problems are common and often lead to painful degenerative arthritis. Initial treatment consists of proper orthotics and shoes, pain control, bracing, and physical therapy. But when all conservative therapy fails, fusion of the affected bones may be recommended to alleviate pain.

Limited motion

Since the ankle and hind foot actually have a rather limited motion compared to the shoulder, knee, and hip, this surgery leads to a stiff but relatively painless functional joint.

The surgical fusion process starts by debriding the bone surfaces to expose viable bone. This is followed by introducing internal fixation screws to allow mechanical stability; careful irrigation; mixing of the two compounds (rhPDGF-BB and granules), and packing the mixture into the space. The surgical site is then closed by carefully replacing the periosteal and overlying soft tissue. The patient is then placed in an immobilization cast for about 12 weeks. There is no weight bearing for the first six weeks after surgery.

Clinical trial

The pivotal clinical trial was performed in 37 clinical centers in Canada and the United States. Four hundred thirty-four patients participated in the trial in a 2:1 randomization to either the rhPDGF-BB/granule group or an autograft. The patients were obviously not blinded. CT evaluations were conducted at 9, 16, 24, and 36 weeks and X-ray evaluations at 1– 3, 6, 9, 12, 16, 24, 26, and 52 weeks. An independent radiologist evaluated the CT and X-ray studies. The best indicator of adequate fusion is the CT scan; plain radiographs are useful but do not always reliably indicate complete healing.

In addition, antibody formation, pain, quality of life, and functional outcomes were measured. It was a noninferiority study.

Safety endpoints demonstrated no difference in serious adverse events — surgical complications, serious complications, or infections — although the tendency was for higher AEs in all three areas for the autograft patients.

The trial results met the statistical endpoints for noninferiority for clinical healing, clinical success, and radiographic findings. That does not mean that all patients had an acceptable final result. The major endpoints are highlighted in the table.

Clinical endpoints, 52 weeks
  Augment
N=260
joints =394
Autograft
N=137
joints=203
Noninferiority
(p-value)
Clinical healing 87.7% 88.3% Yes (0.003)
Nonhealing 4.2% 5.8% Yes (<0.008)
Clinical success 76.9% 78.1% Yes (0.022)
Therapeutic failure 7.3% 8.0% Yes (<0.001)
SF-12 42.4 45.0 Yes (<0.001)
VAS pain scores
Fusion site 13.2 12.9 Yes (<0.001)
Weight bearing 15.6 15.8 Yes (<0.001)
Graft site pain (any)
% of patients 0 44% Yes (<0.001)
SF-12 is the Short Form Health Survey; VAS is visual analog scale

Other uses

Overall the company claims that this study establishes the Augment Bone Graft as a safe and effective alternative to autograft in hindfoot and ankle surgical patients.

The company expects the Augment Bone Graft product to be approved for marketing in the United States by mid-2011. It currently has outsourced the manufacturing for its dental form of this product but has just started building a $20 million facility in eastern Tennessee to manufacture, package, store, and distribute the product in the coming years.

BioMimetic Therapeutics is also investigating the use of rhPDGF-BB for treatment of traumatic fractures; to repair damage to cartilage, tendons, and ligaments; and for use in spinal fusions. It also recently received orphan status for the use of this growth factor for osteochondritis disseacans, a rare, painful condition that can affect the knee, elbow, and ankle.

BioMimetic Therapeutics is obviously an example of how Tomorrow’s Medicine is moving quickly into tissue regeneration and repair. But this company also is proof that the biotech revolution is not just occurring in Massachusetts and California. The biotech revolution is now moving into America’s heartland!

Thomas Morrow, MD, is the immediate past president of the National Association of Managed Care Physicians. He has 24 years of managed care experience at the payer or health plan level. Contact him at TMorrow@ManagedCareMag.com
The author is a director in the value-based health department at Genentech. He has had no other industry affiliations in the past three years. The views expressed in Tomorrow’s Medicine are the author’s alone.

Managed Care’s Top Ten Articles of 2016

There’s a lot more going on in health care than mergers (Aetna-Humana, Anthem-Cigna) creating huge players. Hundreds of insurers operate in 50 different states. Self-insured employers, ACA public exchanges, Medicare Advantage, and Medicaid managed care plans crowd an increasingly complex market.

Major health care players are determined to make health information exchanges (HIEs) work. The push toward value-based payment alone almost guarantees that HIEs will be tweaked, poked, prodded, and overhauled until they deliver on their promise. The goal: straight talk from and among tech systems.

They bring a different mindset. They’re willing to work in teams and focus on the sort of evidence-based medicine that can guide health care’s transformation into a system based on value. One question: How well will this new generation of data-driven MDs deal with patients?

The surge of new MS treatments have been for the relapsing-remitting form of the disease. There’s hope for sufferers of a different form of MS. By homing in on CD20-positive B cells, ocrelizumab is able to knock them out and other aberrant B cells circulating in the bloodstream.

A flood of tests have insurers ramping up prior authorization and utilization review. Information overload is a problem. As doctors struggle to keep up, health plans need to get ahead of the development of the technology in order to successfully manage genetic testing appropriately.

Having the data is one thing. Knowing how to use it is another. Applying its computational power to the data, a company called RowdMap puts providers into high-, medium-, and low-value buckets compared with peers in their markets, using specific benchmarks to show why outliers differ from the norm.
Competition among manufacturers, industry consolidation, and capitalization on me-too drugs are cranking up generic and branded drug prices. This increase has compelled PBMs, health plan sponsors, and retail pharmacies to find novel ways to turn a profit, often at the expense of the consumer.
The development of recombinant DNA and other technologies has added a new dimension to care. These medications have revolutionized the treatment of rheumatoid arthritis and many of the other 80 or so autoimmune diseases. But they can be budget busters and have a tricky side effect profile.

Shelley Slade
Vogel, Slade & Goldstein

Hub programs have emerged as a profitable new line of business in the sales and distribution side of the pharmaceutical industry that has got more than its fair share of wheeling and dealing. But they spell trouble if they spark collusion, threaten patients, or waste federal dollars.

More companies are self-insuring—and it’s not just large employers that are striking out on their own. The percentage of employers who fully self-insure increased by 44% in 1999 to 63% in 2015. Self-insurance may give employers more control over benefit packages, and stop-loss protects them against uncapped liability.